Robust handling enhancement on a slippery road using quantitative feedback theory

Author:

Rezai Mohsen1,Heidari Shirazi Kourosh1

Affiliation:

1. Mechanical Engineering Department, Faculty of Engineering, Shahid Chamran University, Ahvaz, Iran

Abstract

In the present paper, a quantitative feedback theory controller is developed to control the lateral motion and yawing motion of a car equipped with a mechatronic front-wheel steering system. The overall objective is to track the yaw rate with the aim of achieving satisfactory performance specifications for the lateral dynamics of the vehicle, regarding different road conditions as well as uncertain parameters such as the mass, the velocity and the moment of inertia of the vehicle. To establish an accurate model of the vehicle, a seven-degree-of-freedom model is considered. An observer for detecting the cornering stiffnesses of the tyres based on the beta-less method is designed. In spite of the estimation of the cornering stiffnesses, a wide range of uncertainties for this parameter in the design procedure of the quantitative feedback theory controller is predicted. The effects of practical data acquisition and processing time delays as well as the dynamic behaviours of the actuators are studied. The simulations show that the designed quantitative feedback theory controller has a significant effect on stable cornering in the presence of the numerous wide-ranging uncertainties. Nevertheless, for satisfactory behaviour of the controller, there are some important practical considerations such as the fast response of actuators and the short processing time of the computational electronic unit especially for a slippery road.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparison of neural network and neurofuzzy identification of vehicle handling under uncertainties;Transactions of the Institute of Measurement and Control;2019-06-21

2. Path control in limit handling and drifting conditions using State Dependent Riccati Equation technique;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2019-05-19

3. A feedback linearization controller combined with a data-driven subspace-based prediction method for vehicle handling stabilization;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2018-04-13

4. Design of a low-bandwidth position controller based on system identification for an electro-hydrostatic actuator;Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering;2017-11-22

5. Intervention criterion and control research for active front steering with consideration of road adhesion;Vehicle System Dynamics;2017-11-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3