Evaluation method with digital expert on the criticality of car-following scenarios for autonomous vehicles testing

Author:

Nan Jiangfeng1ORCID,Deng Weiwen12,Zhao Rui1ORCID,Zheng Bowen1,Xiao Zhicheng1,Ding Juan3

Affiliation:

1. The School of Transportation Science and Engineering, Beihang University, Beijing, China

2. The Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing, China

3. PanoSim Technology Company, Limited, Jiaxing City, Zhejiang Province, China

Abstract

Evaluation of autonomous vehicles is one of the major challenges before they can be released. Due to the advantages in efficiency, cost, and safety, scenario-based simulation methods have recently received great attention. Even so, as the complexity and uncertainty exist in the real driving environment, the scenarios that autonomous vehicles may encounter are infinite. Therefore, it is necessary to classify simulation scenarios according to their criticality. It contributes to accelerating the evaluation processes. This paper presents a novel criticality evaluation method, based on a proposed Digital Expert, for car-following autonomous driving. The Digital Expert acts as the evaluator to evaluate the criticality of scenarios depending on their driving performance. Driving performance refers to the achieved degree of driving intentions. Firstly, a Digital Expert is established as the evaluator for the criticality of the scenario using the inverse reinforcement learning method. Then, based on the fact that the intention of Digital Expert is to maximize its internal reward function, the reward function is used to evaluate driving performance. Finally, calculating the criticality of the car-following scenario according to the mapping relationship between driving performance and criticality. Using the driving data in the NGSIM data set, this paper generates two groups of simulated car-following scenarios and evaluates the criticalities of the two scenarios. The experimental results show that the proposed criticality evaluation method can reasonably evaluate the criticality of car-following scenarios.

Funder

“Lingyan” R&D Program of Zhejiang Province

“Jianbing” R&D Program of Zhejiang Province

the Key R&D Program of Jiaxing City

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3