Comparative study of the internal flow in diesel injection nozzles at cavitating conditions at different needle lifts with steady and transient simulations approaches

Author:

Salvador FJ1,De la Morena J1,Crialesi-Esposito M1,Martínez-López J2

Affiliation:

1. CMT-Motores Térmicos, Universitat Politècnica de València, Spain

2. Williams Grand Prix Engineering Limited, UK

Abstract

The motion of the needle during the injection process of a diesel injector has a marked influence on the internal flow, the fuel characteristics at the nozzle exit, the spray pattern and the fuel–air mixing process. The current paper is focused on the computational study of the internal flow and cavitation phenomena during the injection process, with inclusion of the opening where the needle is working at partial lifts. This study has been performed with a homogeneous equilibrium model (OpenFOAM) customized by the authors to simulate the real motion of the needle. The first part of the study covers the analysis of the whole injection process with a moving mesh using the boundary conditions provided by a one-dimensional (1D) model of the injector created in AMESim. This 1D model has offered the possibility of reproducing the movement of the needle with real lift law and real injection pressure evolution during the injection. Thus, it has been possible to compare the injection rate profiles provided by OpenFOAM against those obtained both in AMESim and experimentally. The second part compares the differences in mass flow, momentum flux, effective velocity and cavitation appearance between steady (fixed lifts) and transient (moving mesh) simulations. The aim of this comparison is to establish the differences between these two approaches. On the one hand is a more realistic approach in its use of transient simulations of the injection process and where the needle movement is taken into account. On the other hand, is the use of steady simulations at partial needle lifts. This analysis could be of interest to researchers devoted to the study of the diesel injection process since it could help to delimit the uncertainties involved in using the second approach which is more easily carried out, versus the first which is supposed to provide more realistic results.

Funder

Secretaría de Estado de Investigación, Desarrollo e Innovación

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3