Edge-enhanced Graph Attention Network for driving decision-making of autonomous vehicles via Deep Reinforcement Learning

Author:

Qiang Yuchuan1,Wang Xiaolan1ORCID,Liu Xintian1ORCID,Wang Yansong1,Zhang Weiwei2ORCID

Affiliation:

1. School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, P.R. China

2. Shanghai Smart Vehicle Cooperating Innovation Center Co., Ltd, Shanghai, P.R. China

Abstract

Despite the rapid advancement in the field of autonomous driving vehicles, developing a safe and sensible decision-making system remains a challenging problem. The driving decision-making module is one of the most essential sections of the entire autonomous driving system, and the decision generated from it can significantly impinge the lives and property of passengers. Complicated interactions among traffic participants have the most profound impact on the decision-making process, yet the interactions are often simplified or overlooked due to their complexity and implicit nature. To address this issue, this work proposes an Edge-Enhanced Graph Attention Reinforcement Learning (EGARL) framework that aims to make rational driving decisions by comprehensively modeling the interactions among agents. EGARL comprises three core components: a graphical representation of the traffic scenario that covers both topological and interactive information; an Edge-enhanced Graph Attention Network (E-GAT) that utilizes the graphical representation to extract interactive features by comprehensively considering nodes and edges of the graph; and a deep reinforcement learning method that generates driving decisions based on the current state and features extracted from E-GAT. Experimental results demonstrate the satisfying performance of EGARL. Our proposed framework can contribute to the development of intelligent transportation systems, enhancing the safety and efficiency of driving.

Funder

Project of National Natural Science Foundation of China

Program for Shanghai Academic Research Leader

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3