A driving-cycle predictive control approach for energy consumption optimization of hybrid electric vehicle

Author:

Liu Bingjiao1ORCID,Shi Qin1,He Zejia1,Wei Yujiang1,Qiu Duoyang2,He Lin3

Affiliation:

1. School of Automotive and Transportation Engineering, Hefei University of Technology, Hefei, Anhui, China

2. School of Advanced Manufacturing Engineering, Hefei University, Hefei, Anhui, China

3. Laboratory of Automotive Intelligence and Electrification, Hefei University of Technology, Hefei, Anhui, China

Abstract

This paper proposes an adaptive control strategy of fuel consumption optimization for hybrid electric vehicles (HEVs). The strategy combines a moving-horizon-based nonlinear autoregressive (NAR) algorithm, a backpropagation (BP) neural network algorithm, and an equivalent consumption minimization strategy (ECMS) method to reduce energy consumption. The moving-horizon-based NAR algorithm is applied to predict the short future driving cycle. The BP neural network algorithm is employed to recognize the driving cycle types, which provides the basis for the adaptive ECMS. Based on the abovementioned approach, the power split of the fuel and electric system is determined in advance, and the optimal control of energy efficiency is achieved. A driving experiment platform is established, taking a synthetic driving cycle composed of several standard driving cycles as the target cycle, and the control strategy is tested by the driver’s real operation. The results indicate that, compared with the basic ECMS, the A-ECMS with moving-horizon-based driving cycle prediction and recognition has better SOC (state of charge) retention and reduces the fuel consumption of the engine by 3.31%, the equivalent fuel consumption of the electric system by 0.9 L/100 km and the total energy consumption by 1 L/100 km. Adaptive ECMS based on driving cycle prediction and recognition is an effective method for the energy management of HEVs.

Funder

the University Synergy Innovation Program of Anhui Province

jiangsu provincial key research and development program

Innovation Project of New Energy Vehicle and Intelligent Connected Vehicle of Anhui Province

state key laboratory of automotive simulation and control

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3