Simulation study on the vibration durability test of an automotive plastic fuel tank based on fluid–structure coupling

Author:

Wang Wenzhu1ORCID,Zhang Zhenwei2,Liu Gang1,Wei Jun3,Li Jie4

Affiliation:

1. Shenyang Aerospace University, Shenyang, China

2. Chongqing Changan Automobile Co Ltd, Changchun, China

3. Geely Automotive Research Institute, Ningbo, China

4. Jilin University, Changchun, China

Abstract

In this study a new simulation technology based on fluid-structure coupling is to solve the problem of plastic fuel tank lifting lug fracture during vibration durability test, which has not been reported in the existing literature. The basic principle of fluid-structure coupling is summarised and the finite element model (FEM) of the fuel tank system established. Modal simulation analysis is carried out, and the FEM is updated and verified via the modal test method. A harmonic response analysis of the fuel tank system is performed. Simulation results show the maximum stress at the lifting lug is 29.69 MPa in the Z-direction vibration, exceeding the allowable fatigue strength. The resonance occurred, which is consistent with the result of the vibration durability test. To enable the fuel tank to pass the vibration durability test, this study proposes to optimise the fixture, thereby enhancing the natural frequency of the entire fuel tank system and avoiding an excitation frequency of 30 Hz. Through the harmonic response analysis and test verification, the fuel tank passes the vibration durability test. Therefore, the numerical simulation method based on fluid–structure coupling and the fixture optimisation scheme adopted is feasible and can considerably shorten the test cycle and improve efficiency.

Funder

General project of Liaoning Provincial Department of Education

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3