Investigation of turbocharged diesel engine operation, exhaust emissions, and combustion noise radiation during starting under cold, warm, and hot conditions

Author:

Rakopoulos C D1,Dimaratos A M1,Giakoumis E G1

Affiliation:

1. Internal Combustion Engines Laboratory, Thermal Engineering Department, School of Mechanical Engineering, National Technical University of Athens, Athens, Greece

Abstract

Control of performance and transient emissions from turbocharged diesel engines is an important objective for automotive manufacturers, since stringent criteria for exhaust emissions must be met. In particular, (cold) starting is of exceptional importance owing to its significant contribution to the overall emissions during a transient test cycle. In the present work, experimental tests were conducted on a turbocharged and after-cooled bus–truck diesel engine in order to investigate the engine operating behaviour and the formation mechanisms of nitric oxide, smoke, and combustion noise during cold, warm, and hot starting. With this as a target, a fully instrumented test bed was set up, using ultra-fast response analysers capable of capturing the instantaneous development of emissions and various key engine and turbocharger parameters. The experimental test pattern included a variety of starting conditions, defined by the thermal status of the engine (i.e. the coolant temperature) and its idling speed. As expected, turbocharger lag was found to be the major contributor for the pollutant emissions spikes in all cases, with the thermal status of the engine and its idling speed playing important roles in the combustion (in)stability, turbocharger response, and noise radiation.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Effects of the Oil Temperature Warm-Up on Engine Fuel Consumption;SAE Technical Paper Series;2024-04-09

2. Model Parameterized Assessment of a Thermal Storage Unit for Engine Oil Warm-up Improvement;Journal of Physics: Conference Series;2022-12-01

3. Vibrodiagnostics of marine diesel engines in IMES GmbH systems;Ships and Offshore Structures;2022-09-30

4. Development of control strategy for fast idling condition of diesel engine based on target torque;Advances in Mechanical Engineering;2021-12

5. Fast engine noise sources separation based on short-time segmentation method;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2020-11-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3