Haptic tele-driving design of vehicle steering control system with communication delay under complicated driving and road conditions

Author:

Sajjadi Mohammadreza1ORCID,Chahari Mahmood2,Salarieh Hassan3ORCID

Affiliation:

1. School of Mechanical Engineering, Shiraz University, Shiraz, Iran

2. State University of New York at Binghamton, Binghamton, NY, USA

3. Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran

Abstract

In this paper, stabilization of tele-driving system in presence of communication time delay is studied using a 103 DOF vehicle model generated in ADAMS/Car Software. The purpose of this study is achieving a real sense of driving for tele-driving system in virtual environment under complicated driving and road conditions. To this aim, the performance of the various control architectures, in terms of position and force tracking, are investigated. Hence, the two-channel architecture is chosen as the most appropriate scheme to implement the haptic control system for the vehicle steering mechanism. In this paper, we designed an effective haptic feedback control for vehicle steering mechanism in the tele-driving system so that a command can be exerted to steering wheel by the human operator, which passes through the communication channels and will be applied to unmanned vehicle steering system. It is verified that an appropriate coordination performance under the human input can be obtained with the proposed control framework. To overcome the possible instability problem associated with existence of time-delay in communication channels, wave variables and their corrections are effectively embedded into the control system. Finally, the proposed bilateral tele-driving control on a rough 3D road surface at complicated driving and road conditions in the presence of time-delay are examined comprehensively.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3