A hierarchical energy efficiency optimization control strategy for distributed drive electric vehicles

Author:

Hua Min1,Chen Guoying1,Zhang Buyang1,Huang Yanjun2

Affiliation:

1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, P.R. China

2. College of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada

Abstract

Distributed drive electric vehicle with four in-wheel motors is widespread with various characteristics, such as performance potentials for independent wheel drive control and energy efficiency. However, in future, one of the biggest obstacles for its success in the automotive industry would be its limited energy storage. This paper proposes a hierarchical control method that involves a high-level motion controller that uses sliding mode control to calculate the total desired force and yaw moment and a low-level allocation controller in which an optimal energy-efficient control allocation scheme is presented to provide optimally distributed torques of four in-wheel motors in all the normal cases. A practicable motor energy efficiency model as a motor actuator is proposed by incorporating the electric motor efficiency map based on measured data into the motor efficiency experiment and a current closed-loop motor model. Moreover, both tracking performance and energy-saving are carried out in this research and evaluated via a co-simulation approach using MATLAB/Simulink and CarSim. A ramp maneuver at a constant speed and New European Driving Cycle and Urban Dynamometer Driving Schedule maneuvers have been conducted. To conclude, it is demonstrated that distributed drive electric vehicle with four in-wheel motors can reduce total power consumption and enhance tracking performance compared with a simple control allocation in which the torques are the fixed ratio distribution.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3