A fusion estimation of tire vertical forces using model-based tire state estimators for a dual-sensor intelligent tire

Author:

Min Delei1ORCID,Wei Yintao1ORCID,Zhao Tong1,He Junxiang1

Affiliation:

1. School of Vehicle and Mobility, Tsinghua University, Beijing, China

Abstract

Estimating tire vertical forces is essential to vehicle state estimation and stability control. Intelligent tires can be used to estimate tire vertical forces, but functional safety and extensive tests are issues to consider during intelligent tire development. This paper proposes a fusion estimation approach using model-based tire state estimators (TSEs) to estimate the tire vertical forces of a dual-sensor intelligent tire, which can output the circumferential strain, radial, and circumferential acceleration signals with a strain sensor and an accelerometer mounted at different positions on the inner liner. The mutual conversion between strain and acceleration signals is indicated in this paper for the first time; therefore, the internal relationship between different signals is revealed. Each measurement signal of the two sensors corresponds to a TSE composed of a signal processing algorithm, a mathematical model, and a Kalman filter. The mathematical model is proposed in this paper based on the flexible ring tire model (FRTM). The final estimated value of the tire vertical force is obtained by weighting and summing the outputs of the three TSEs. The weighting factors are determined using the genetic algorithm to study the fusion estimation effect. An integrated CarSim model is built in this paper to validate the estimation performance under various driving conditions, including driving straight at a constant speed, driving on an S-shaped road, and performing a double lane change at a high vehicle speed. For all driving conditions, the mean error rates of the fusion estimation are less than 2%. The model-based tire state estimators can avoid the extensive tests needed in the data-based methods. Furthermore, the fusion of the outputs of three TSEs can further improve the estimation performance compared with the situation when a single TSE is used. Therefore, the studies in this paper have guiding significance for intelligent tire development.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3