Piezoelectric energy harvesting for tyre pressure measurement applications

Author:

Mak Kuok H1,McWilliam Stewart1,Popov Atanas A1

Affiliation:

1. Materials, Mechanics and Structures Division, The University of Nottingham, University Park, UK

Abstract

Piezoelectric energy harvesters have been proposed as a means of supplying electrical power to remote tyre pressure monitoring systems. This solution avoids problems of battery replacement and allows the tyre pressure monitoring system to be self-powered. In this paper, a previously developed theoretical model is used to predict the electric output and mechanical responses of a cantilever beam energy harvester embedded within a car tyre. The radial deformation of the tyre is considered to provide base excitation to the energy harvester, and a bump stop is incorporated into the harvester design to limit the vibration amplitude and maintain the structural integrity of the harvester. The simulation results show that the harvester achieves maximum power output, with or without the stop, when the harvester location coincides with the tyre contact patch. It is also found that the average power output is reduced when a bump stop is used, but the bending stress in the cantilever reduces significantly as the displacement of the beam is limited. A comparison with published experimental results indicates good levels of agreement. The model developed can be used as a design tool to optimize the performance of energy harvesters in tyre applications, where a compromise between power generation and structural integrity is required.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3