Research on parallel control strategy of power converters based on fuzzy neural network

Author:

Sun Gui-Bin1,Chen Song1ORCID,Zhou Shen12,Zhu Yun-Ying1

Affiliation:

1. School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen, China

2. Minbei Vocational and Technical College, Nanping, Fujian, China

Abstract

As pure electric vehicles shift toward intelligent technology, the energy demand for onboard equipment is on the rise. In this study, a parallel control strategy for two 3-kW DC–DC power converters was proposed to meet the power requirements of pure electric vehicle loads in this paper. First, the operation mode of the resonant power converter was analyzed. The operation mode of the power converter adopted the advantageous frequency conversion–phase shift control mode. Second, a parallel control method for Takagi–Sugeno-type fuzzy neural network converters with four inputs and a single output first-order was designed to meet the power demand based on the advantages of fuzzy control and neural networks. The neural networks can be trained automatically based on the established requirements, and the fuzzy rules formulated through fuzzy neural networks were more detailed and accurate. Finally, the proposed control strategy was validated by experiments. The experimental results showed that the proposed control strategy can ensure the stable operation of the power converter during switching under the set load. The output power of the primary and sub converters varies linearly, which can meet the load’s demand for high power. There is no need to develop higher-power power converters. These results can provide a new idea for the research of high-power power converters and reduce development costs.

Funder

New Energy Vehicles and Safety Technology of Fujian Province

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3