Experiment research on the characteristics and mechanism of noise caused by a car door sealing cavity at wind excitation

Author:

Zhang Binyu12,Wang Yigang13,Yu Wuzhou34,Ye Bin2,Peng Zining1,Zhang Hao1ORCID

Affiliation:

1. School of Automotive Studies, Tongji University, Shanghai, China

2. GAC Automotive Research & Development Center, Guangzhou, China

3. Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management Systems, Shanghai, China

4. School of Physics Science and Engineering, Tongji University, Shanghai, China

Abstract

Due to the various geometric shapes of cavities within car door sealing systems, the resulting cavity noise induced by wind excitation exhibits complex characteristics, leading to unclear noise mechanisms. To address this, a study was conducted to examine the acoustic properties of door sealing cavities located in the B-pillar, C-pillar, and backdoor of an SUV within a full-scale aeroacoustic wind tunnel. The main objective was to explore the relationship between cavity noise and interior noise. The results showed that peak components in the sound pressure level spectrum of the cavities significantly contribute to interior noise, particularly for cavities located close to the car’s interior. To gain further insight, the geometric characteristics of the cavities were extracted and transformed into equivalent regular cavities. These equivalent cavities were subsequently tested for their noise performance in a small-scale aeroacoustic wind tunnel, and the occurrence mechanisms were thoroughly investigated. The results demonstrated that the noise spectra of different cavities, whether they had sealing strips or leakage gaps, exhibited typical multipeak characteristics, with some cases even leading to whistling (e.g. backdoor cavity). The reason for the whistling was a resonance when the self-sustained oscillation frequencies of the cavities coincided with or approached the Helmholtz resonance frequencies or modal frequencies of the cavities. Interestingly, the self-sustained oscillation frequency and cavity modal resonance still persisted even when the two frequencies were somewhat separated, albeit with peaks of lower magnitude in the sound pressure spectrum (e.g. in the sealed cavities of the B-pillar and C-pillar).

Funder

Fundamental Research Funds for the Central Universities

National Key R&D Program of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3