Instantaneous and cycle optimization of fuel usage on a dual fuel vehicle leveraging gasoline and natural gas

Author:

Hall Carrie M1,Pamminger Michael1,Sevik James2,Wallner Thomas2

Affiliation:

1. Illinois Institute of Technology, Department of Mechanical, Materials, and Aerospace Engineering, Chicago, IL, USA

2. Argonne National Laboratory, Center for Transportation Research, Lemont, IL, USA

Abstract

Recent increases in natural gas supply have led to a desire to leverage this fuel in the transportation sector. Dual fuel engines provide a platform on which to use natural gas efficiently; these engines, however, require new hardware and new control strategies to properly utilize two fuels simultaneously. This paper explores the impact of implementing dual fuel capabilities on a sedan and demonstrates that a dual fuel E10 and compressed natural gas engine is able to improve the average engine efficiency by up to 6.5% compared to a single fuel engine on standard drive cycles. An optimal control technique is also developed, and the proposed approach allows factors including fuel cost and fuel availability to be taken into account. Optimization at each time instant is investigated and contrasted with optimization over the entire cycle. Cycle optimization is shown to have particular value for cases in which the level in one fuel tank is low.

Funder

Vehicle Technologies Program

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3