Modular design of artificial potential field and nonlinear model predictive control for a vehicle collision avoidance system with move blocking strategy

Author:

Abdul Hamid Umar Zakir12,Zamzuri Hairi1,Yamada Tsuyoshi2,Abdul Rahman Mohd Azizi1,Saito Yuichi2,Raksincharoensak Pongsathorn2

Affiliation:

1. Vehicle System Engineering iKohza, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia

2. Department of Mechanical Systems Engineering, Tokyo University of Agriculture & Technology, Koganei, Tokyo, Japan

Abstract

The collision avoidance (CA) system is a pivotal part of the autonomous vehicle. Ability to navigate the vehicle in various hazardous scenarios demands reliable actuator interventions. In a complex CA scenario, the increased nonlinearity requires a dependable control strategy. For example, during collisions with a sudden appearing obstacle (i.e. crossing pedestrian, vehicle), the abrupt increment of vehicle longitudinal and lateral forces summation during the CA maneuver demands a system with the ability to handle coupled nonlinear dynamics. Failure to address the aforementioned issues will result in collisions and near-miss incidents. Thus, to solve these issues, a nonlinear model predictive control (NMPC)-based path tracking strategy is proposed as the automated motion guidance for the host vehicle CA architecture. The system is integrated with the artificial potential field (APF) as the motion planning strategy. In a hazardous scenario, APF measures the collision risks and formulates the desired yaw rate and deceleration metrics for the path replanning. APF ensures an optimal replanned trajectory by including the vehicle dynamics into its optimization formulation. NMPC then acts as the coupled path and speed tracking controller to enable vehicle navigation. To accommodate vehicle comfort during the avoidance, NMPC is constrained. Due to its complexity as a nonlinear controller, NMPC can be time-consuming. Therefore, a move blocking strategy is assimilated within the architecture to decrease the system’s computational burden. The modular nature of the architecture allows each strategy to be tuned and developed independently without affecting each others’ performance. The system’s tracking performance is analyzed by computational simulations with several CA scenarios (crossing pedestrian, parked bus, and sudden appearing moving vehicle at an intersection). NMPC tracking performance is compared to the nominal MPC and linear controllers. The effect of move blocking strategies on NMPC performance are analyzed, and the results are compared in terms of mean squared error values. The inclusion of nonlinear tracking controllers in the architecture is shown to provide reliable CA actions in various hazardous scenarios. The work is important for the development of a reliable controller strategy for multi-scenario CA of the fully autonomous vehicle.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3