Self-learning control for coordinated collision avoidance of automated vehicles

Author:

Wang Yan1ORCID,Yin Guodong1ORCID,Li Yanjun2,Ullah Saif3,Zhuang Weichao1,Wang Jinxiang1ORCID,Zhang Ning1,Geng Keke1ORCID

Affiliation:

1. School of Mechanical Engineering, Southeast University, Nanjing, China

2. Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA

3. Department of Industrial Engineering, University of Engineering and Technology, Taxila, Pakistan

Abstract

For the improvement of automotive active safety and the reduction of traffic collisions, significant efforts have been made on developing a vehicle coordinated collision avoidance system. However, the majority of the current solutions can only work in simple driving conditions, and cannot be dynamically optimized as the driving experience grows. In this study, a novel self-learning control framework for coordinated collision avoidance is proposed to address these gaps. First, a dynamic decision model is designed to provide initial braking and steering control inputs based on real-time traffic information. Then, a multilayer artificial neural networks controller is developed to optimize the braking and steering control inputs. Next, a proportional–integral–derivative feedback controller is used to track the optimized control inputs. The effectiveness of the proposed self-learning control method is evaluated using hardware-in-the-loop tests in different scenarios. Experimental results indicate that the proposed method can provide good collision avoidance control effect. Furthermore, vehicle stability during the coordinated collision avoidance control can be gradually improved by the self-learning method as the driving experience grows.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3