Neural networks assisted computational aero-acoustic analysis of an isolated tire

Author:

Uddin Ghulam Moeen1ORCID,Niazi Sajawal Gul1,Arafat Syed Muhammad1,Kamran Muhammad Sajid1,Farooq Muhammad1,Hayat Nasir1,Malik Sher Afghan2,Zeid Abe3ORCID,Kamarthi Sagar3,Saqib Sania1,Chaudhry Ijaz Ahmad4

Affiliation:

1. Department of Mechanical Engineering, UET Lahore, Lahore, Pakistan

2. Software Tools for Computational Engineering, RWTH Aachen University, Aachen, Germany

3. Department of Mechanical & Industrial Engineering, Northeastern University, Boston, MA, USA

4. Department of Industrial Engineering, University of Management and Technology, Lahore, Pakistan

Abstract

The computational aero-acoustic study of an isolated passenger car tire is carried out to understand the effect of dimensions of longitudinal tire grooves and operational parameters (velocity and temperature) on tire noise. The computational fluid dynamics and acoustic models are used to obtain aero-acoustic tire noise at near-field and far-field receivers around the tire and artificial neural networks-based regression are used to study the highly non-linear and interactive causal relationships in the system. Unsteady Reynolds-Averaged Navier-Stokes based realizable k-epsilon model is used to solve the flow field in the computational domain. The Ffowcs Williams and Hawkings model is used to obtain aero-acoustic tire noise at far-field positions. Spectral analysis is used to convert the output time domain to frequency domain and to obtain A-weighted sound pressure level. Artificial neural network–based response surface regression is conducted to understand casual relationships between A-weighted sound pressure level and control variables (Groove depth, Groove width, Temperature and velocity). Maximum A-weighted sound pressure level is observed in the wake region of the tire model. The interaction study indicates that ∼10% reduction in the aero-acoustic emissions is possible by selecting appropriate combinations of groove width and groove depth. The interaction of velocity with width is found to be most significant with respect to A-weighted sound pressure level at all receivers surrounding the tire. The interaction of operational parameters, that is, velocity and temperature are found to be significant with respect to A-weighted sound pressure level at wake and front receivers. Therefore, the regional speed limits and seasonal temperatures need to be considered while designing the tire to achieve minimum aero-acoustic emissions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3