Study on the leakage of plunger pair under static condition in high-pressure common rail injector considering deformation effect

Author:

Gao Zhenbo1ORCID,Zhang Yong1,Wang Dandan1

Affiliation:

1. School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou, China

Abstract

Plunger pair is the key component of high pressure common rail injector and its sealing performance is very important. Therefore, it is of great significance to study the leakage mechanism of plunger pair. Under static condition, the high-pressure fuel flow in the gap of the plunger pair caused the deformation of the plunger pair structure and the temperature rise of fuel. For a more comprehensive and accurate study, the effect of deformation, including elastic deformation and thermal expansion, the physical properties of fuel, including density, viscosity and specific heat capacity, as well as the influence of plunger posture in the plunger sleeve, including concentric, eccentric, and inclination condition, are considered in this paper. Firstly, the mathematical models including Reynolds equation, film thickness equation, non-isothermal flow equation, parametric equation of fuel physical property, and section velocity equation are established. The numerical analysis based on finite difference method for the solution of these models is given, which can simultaneously solve for the fuel film pressure distribution, temperature distribution, thickness distribution, distribution of fuel physical properties, and leakage rate. The models are validated by comparing the calculated leakage rates with the measurements. The effects under different posture of plunger are discussed too. Some of the conclusions provided good guidance for the design of high-pressure common rail injector.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3