Correlation analysis of road load fuel economy variations by energy difference for gasoline direct injection and diesel-powered vehicles

Author:

Son Jeonghun1,Ko Jinyoung1,Kim Kangjin1,Myung Cha-Lee1,Park Simsoo1,Kim Charyung12

Affiliation:

1. School of Mechanical Engineering, Korea University, Seoul, Republic of Korea

2. Korea Automobile Testing & Research Institute, Hwaseong, Republic of Korea

Abstract

Test flexibilities, such as the tire pressure, adjustment of brakes, vehicle preconditioning, test mass, and running-in period, are multiple factors that can confound vehicle emissions and fuel economy tests. The road load force is the most influential flexibility factor for a type-approval vehicle certification test. Because of these various factors, it was revealed that there was a substantial difference between the type-approval emissions and those from a real-driving emissions test. In this study, the test cycle road load energy using the road load coefficients determined by the TA coast-down procedure was the base condition. After calculating the test cycle road load power, the constant term of the road load coefficient was adjusted by the energy loss. The tolerance of the road load in domestic regulation is 15%, so the constant term of the road load coefficient was increased by 5% in the cycle road load energy loss. Then, the road load power and tractive power were calculated from the force and vehicle speed. The vehicle fuel efficiency, under the road load variation conditions, was determined for modern 2.4 L gasoline direct injection and lean NOx trap-equipped diesel vehicles on a chassis dynamometer. To assess the impact of different road load values on the FE and carbon dioxide emissions, the test cycle was performed over the combined modes of the federal test procedure-75 and the highway fuel economy test. To investigate the road load variations of the vehicle fuel economy in correlation with the energy difference, the statistical approach of the one-way analysis of variance was applied. The results showed that the variations of the road load energy of the tested cycle were closely related in a trade-off relationship with the vehicle fuel economy.

Funder

National Research Foundation of Korea

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3