Design and optimization of a modified series hybrid electric vehicle powertrain

Author:

Borthakur Swagata1,Subramanian Shankar C1

Affiliation:

1. Department of Engineering Design, Indian Institute of Technology Madras (IIT Madras), Chennai, India

Abstract

Hybrid electric vehicles are emerging technologies that are considered as eco-friendly alternative solutions to internal combustion engine–driven vehicles. This paper proposes a modified hybrid electric vehicle powertrain system that addresses the shortcomings of a series hybrid electric vehicle powertrain. The proposed configuration replaces the conventional generator of a series hybrid electric vehicle with an integrated starter generator that supports the traction motor of the vehicle during acceleration and peak torque requirements and maintains the state of charge of the batteries to provide an extended electric range of the vehicle. The work done in this paper can be categorized into two stages. The first stage is the methodical development of the powertrain in terms of initial parameter matching and sizing of the vehicle components by considering the fundamentals of longitudinal vehicle dynamics. The second stage describes the optimization of the proposed configuration to meet the design objective of maximizing fuel economy subjected to a set of vehicle performance constraints. The performance of the proposed powertrain was evaluated and compared with a series hybrid electric vehicle powertrain for an on-road Indian driving cycle using AVL CRUISE, which is a commercially available software for the study and analysis of road vehicle powertrains. Result analysis during initial parameterization showed a reduction in gross vehicle weight of the proposed configuration by 244 kg (1.5%) and an improvement in the average operating efficiency of the traction motor by around 11%, when compared to a series hybrid electric vehicle. Furthermore, the optimization results for the proposed configuration established an improvement in the fuel economy by 21% while meeting vehicle performance requirements.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3