GIVA: Interaction-aware trajectory prediction based on GRU-Improved VGG-Attention Mechanism model for autonomous vehicles

Author:

Meng Zhiwei12ORCID,He Rui1,Wu Jiaming2,Zhang Sumin1,Bai Ri1,Zhi Yongshuai1ORCID

Affiliation:

1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, China

2. Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden

Abstract

Predicting future trajectories is crucial for autonomous vehicles, as accurate predictions enhance safety and inform subsequent decision-making and planning modules. This is however a challenging task due to the complex interactions between surrounding vehicles. Existing methods struggled to extract deep representations and often overlook spatial dependence. To address this problem, this paper introduces GIVA, an interaction-aware trajectory prediction method based on the Gated Recurrent Unit (GRU)-Improved Visual Geometry Group (VGG)-Attention Mechanism model. GIVA first encodes the historical trajectories of the target vehicle and its surrounding vehicles using a GRU Encoder. Next, an Interaction Module, which combines the Improved VGG Pooling Module and the Attention Mechanism Pooling Module, effectively captures spatial interaction features between vehicles. The Improved VGG Pooling Module extracts more detailed and effective interaction information, while the Attention Mechanism Pooling Module emphasizes the importance of surrounding vehicles for the target vehicle’s future trajectory. Lastly, the dynamic encoding feature of the target vehicle and the fused interaction feature are concatenated and input into a GRU Decoder to generate the future trajectory. Experiments on the public Next Generation Simulation (NGSIM) dataset showcase the effectiveness of GIVA compared to existing prediction approaches, demonstrating its potential for improving autonomous vehicle performance.

Funder

VINNOVA project “ICVSafe: Testing safety of intelligent connected vehicles in open and mixed road environment”

Graduate Innovation Fund of Jilin University

Natural Science Foundation of Jilin Province

Distinguished International Students Scholarship

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3