Theoretical and experimental study on drag torque of wet clutch considering surface tension and shrinkage of oil film

Author:

Xu Chunjie1ORCID,Xie Fangwei12,Guo Xinjian3ORCID,Agarwal Ramesh K4,Liu Xiumei1,He Kewei5,Li Zhibao3

Affiliation:

1. School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, China

2. Jiangsu Province and Education Ministry Co-sponsored Collaborative Innovation Center of Intelligent Mining Equipment, China University of Mining and Technology, Xuzhou, China

3. School of Mechanical Engineering, Jiangsu University, Zhenjiang, China

4. Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA

5. China Coal Science and Technology Group Taiyuan Research Institute Co., Ltd., Taiyuan, China

Abstract

The drag torque produced by the viscous shearing action of lubricating oil is an important component of the power loss of wet clutches. Studying the prediction model and its influencing factors will provide important theoretical support for reducing the drag torque. Taking a single friction pair wet clutch as the research object, this research obtained the oil film shrinkage under different working conditions based on the VOF model. On this basis, a drag torque calculation model considering the surface tension and shrinkage of oil film is established, in which the drag torque is composed of the torque transmitted by oil film in the oil film continuous zone and the torque transmitted by oil-liquid and gas-liquid in the oil film rupture area, respectively. Comparing the theoretical drag torque with the simulation and experimental results, the variation law of drag torque with the speed difference under different oil film thicknesses and different supply flow is obtained, and the validity of the theoretical model is also verified. Results show that increasing the oil film thickness and decreasing the supply flow will lead to a decrease in drag torque, which provides a useful reference for reducing the drag torque.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3