Fatigue level detection using multivariate autoregressive exogenous nonlinear modeling based on driver body pressure distribution

Author:

Parsa Mehdi Jamshidi1,Javadi Mehrdad2ORCID,Mazinan Amir Hooshang1

Affiliation:

1. Department of Control Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran

2. Department of Mechanical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran

Abstract

Prolonged driving causes symptoms of fatigue in drivers and changes their physical condition during driving. The purpose of this paper is to use a force measurement system located in the driver’s seat by force-sensitive resistance pressure sensors in order to record the received information to predict fatigue by learning regression-based models. This system is designed with 16 FSR (Force Sensing Resistor) sensors mounted on the seat and its backrest that records the driver’s body’s data, based on the force exerted by the driver on the seat in standard mode and during driving at various times. Fatigue level prediction is based on the trained nonlinear autoregressive exogenous model. In this procedure, models based on multivariate regression are first trained, and then correctness is checked. In this paper, the fatigue index is divided into five parts from 0 to 100 included fully conscious, slightly tired, moderately tired, very tired, and extremely tired, so the criterion for diagnosis is crossing the 75% of fatigue index and entering the extremely tired range. The results show that nonlinear models based on exogenous autoregressive have better performance than the linear mode, and even in the nonlinear model of NARX neural network, the fatigue of one step ahead is well predictable. A flopped state will be predictable when the body is immersed in the seat due to fatigue, so is far from the standard sitting position and will be in the extremely tired warning range.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3