Dynamic responses of an engine front-end accessory belt drive system with pulley eccentricities via two spatial discretization methods

Author:

Zhu Hao12,Hu Yumei13,Zhu Weidong2,Long Haiqiang1

Affiliation:

1. State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing, People’s Republic of China

2. Department of Mechanical Engineering, University of Maryland, Baltimore, Maryland, USA

3. State Key Laboratory of Vehicle NVH and Safety Technology, Chongqing, People’s Republic of China

Abstract

In this study, a generic mathematical model for calculating the natural frequencies and the dynamic responses of a typical front-end accessory drive system with any number of pulleys and arbitrary configurations of the tensioner and pulleys is established. The belt bending stiffness and the pulley eccentricities are considered in this model, and their influences on the natural frequency and the dynamic responses of the front-end accessory drive system are examined. A generic spatial discretization method and a Galerkin discretization method, which uses Lagrange multipliers to enhance the boundary conditions, are presented to discretize the continuous belt spans and to transform the governing partial differential equations into ordinary differential equations. The accuracies of the generic spatial discretization method and the Galerkin discretization method are validated by modal tests, and the advantages of the generic spatial discretization method with respect to the efficiency and the convenience of implementation are assessed by comparing the generic spatial discretization method with the Galerkin discretization method and the two-layer iteration approach. The dynamic responses of the typical front-end accessory drive system at different operational velocities are calculated from the governing ordinary differential equations derived from these two methods. It is shown that large vibration amplitudes occur in certain belt spans owing to the resonance conditions or the beat phenomena in certain operational conditions and that the belt bending stiffness has a negligible influence on the vibrations of the belt drive system because its value is small.

Funder

the National Natural Science Foundation of China

the Specialized Research Fund for the Doctoral Program of Higher Education

2015 Chongqing University Postgraduates’ Innovation Project

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3