Modelling boundary-layer transition on wings operating in ground effect at low Reynolds numbers

Author:

Roberts LS1ORCID,Finnis MV1,Knowles K1

Affiliation:

1. Centre for Defence Engineering and Aeromechanical Systems Group, Cranfield University, Defence Academy of the United Kingdom, Shrivenham, UK

Abstract

The transition-sensitive, three-equation k- kL- ω eddy-viscosity closure model was used for simulations of three-dimensional, single-element and multi-element wing configurations operating in close proximity to the ground. The aim of the study was to understand whether the model correctly simulated the transitional phenomena that occurred in the low Reynolds number operating conditions and whether it offered an improvement over the classical fully turbulent k-ω shear stress transport model. This was accomplished by comparing the simulation results to experiments conducted in a 2.7 m × 1.7 m closed-return, three-quarter-open-jet wind tunnel. The model was capable of capturing the presence of a laminar separation bubble on the wing and predicted sectional forces and surface-flow structures generated by the wings in wind tunnel testing to within 2.5% in downforce and 4.1% in drag for a multi-element wing. It was found, however, that the model produced insufficient turbulent kinetic energy during shear-layer reattachment, predicted turbulent trailing-edge separation prematurely in areas of large adverse pressure gradients, and was found to be very sensitive to inlet turbulence quantities. Despite these deficiencies, the model gave results that were much closer to wind-tunnel tests than those given by the fully turbulent k-ω shear stress transport model, which tended to underestimate downforce. Significant differences between the transitional and fully turbulent models in terms of pressure field, wake thickness and turbulent kinetic energy production were found and highlighted the importance of using transitional models for wings operating at low Reynolds numbers in ground effect. The k- kL- ω model has been shown to be appropriate for the simulation of separation-induced transition on a three-dimensional wing operating in ground effect at low Reynolds number.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3