Affiliation:
1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, PR China
Abstract
An integrated optimization method that comprehensively considers draping factors such as fiber reorientations and cutting of layers is proposed for designing CFRP B-pillar reinforcement with a variable thickness. A laminate parameterization scheme, the local shared layer parameterization scheme (LSL-PS), is developed to parameterize the physical composition of laminates with variable-thickness. Kinematic draping simulations and preform designs are introduced to evaluate fiber reorientations and eliminate manufacturing defects. The optimization design of the B-pillar reinforcement is integrated with a LSL-PS, draping-simulation and preform-design, a RBF surrogate model and GA. At the same time, a comparative optimization without the consideration of draping factors is performed in parallel. The comparison results show that considering draping not only helps designers eliminate manufacturing defects but also helps to obtain a further weight reduction of 13.33% because fiber reorientations are fully utilized to improve the structural performance.
Funder
National Natural Science Foundation of China
National Key Research and Development Project
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献