Analysis and optimization of tip-out transient dynamic characteristics of electric vehicle reducer under multi-bearing collaborative preloading

Author:

Guo Dong1,Zhou Yufa1,Hu Mingmao2,Li Ming1ORCID,Li Yingxue1,Zhang Zhigang1,Rao Wenyi3

Affiliation:

1. Key Laboratory of Advanced Manufacturing Technology for Automobile Parts, Ministry of Education, Chongqing University of Technology, Chongqing, China

2. College of Mechanical Engineering, Hubei University of Automotive Technology, Shiyan city, Hubei, China

3. INOVANCE Automotive Co., Ltd., Suzhou, China

Abstract

In this study, the transient dynamic response of an electric vehicle secondary reducer with a multi-bearing cooperative preload was studied. The time-varying mesh stiffness, mesh damping, backlash, axial dynamic stiffness, and axial preload of the system are considered. A novel transient dynamics model was established for the multi-bearing cooperative preloading of the electric vehicle secondary reducer suitable for transient conditions. The accuracy of the built model is verified using a bench test. Subsequently, the transient dynamic response of the reducer system under tip-out working conditions was determined. The optimal preload combination of the bearing was determined using an optimization algorithm. The simulation results show that, under the tip out working condition, increasing the bearing preload can effectively restrain the transient impact of the reducer system, and the optimal bearing preload combination obtained by multi-objective optimization using an optimization algorithm can significantly reduce the transient shock problem of the electric vehicle drivetrain. This study provides theoretical support for suppressing transient shocks in electric vehicle reducer.

Funder

Chongqing Natural Science Foundation Project

National Natural Science Foundation of China

Program for Innovation Team at Institution of Higher Education in Chongqing

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3