A control-oriented model of turbulent jet ignition combustion in a rapid compression machine

Author:

Song Ruitao1,Gentz Gerald1,Zhu Guoming1,Toulson Elisa1,Schock Harald1

Affiliation:

1. Department of Mechanical Engineering, Michigan State University, USA

Abstract

Turbulent jet ignition combustion is a promising concept for achieving high thermal efficiency and low NOx (nitrogen oxides) emissions. A control-oriented turbulent jet ignition combustion model with satisfactory accuracy and low computational effort is usually a necessity for optimizing the turbulent jet ignition combustion system and developing the associated model-based turbulent jet ignition control strategies. This article presents a control-oriented turbulent jet ignition combustion model developed for a rapid compression machine configured for turbulent jet ignition combustion. A one-zone gas exchange model is developed to simulate the gas exchange process in both pre- and main-combustion chambers. The combustion process is modeled by a two-zone combustion model, where the ratio of the burned and unburned gases flowing between the two combustion chambers is variable. To simulate the influence of the turbulent jets on the rate of combustion in the main-combustion chamber, a new parameter-varying Wiebe function is proposed and used for the mass fraction burned calculation in the main-combustion chamber. The developed model is calibrated using the least-squares fitting and optimization procedures. Experimental data sets with different air-to-fuel ratios in both combustion chambers and different pre-combustion chamber orifice areas are used to calibrate and validate the model. The simulation results show good agreement with the experimental data for all the experimental data sets. This indicates that the developed combustion model is accurate for developing and validating turbulent jet ignition combustion control strategies. Future work will extend the rapid compression machine combustion model to engine applications.

Funder

NSF

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3