Electromechanical composite brake control for two in-wheel motors drive electric vehicle with single motor failure

Author:

Zhang Lipeng12ORCID,Pang Zhaowen1,Wang Sheng1,Zhang Silong1,Yuan Xinmao1

Affiliation:

1. School of Vehicle and Energy, Yanshan University, Qinhuangdao, People’s Republic of China

2. Hebei Key Laboratory of Special Delivery Equipment, Yanshan University, Qinhuangdao, People’s Republic of China

Abstract

To solve the security control problem of two in-wheel motors front-drive electric vehicles with single motor failure, an electromechanical composite brake control method based on the normal working motor and the electromechanical brake systems is proposed. First, the electromechanical brake system model is established and the brake characteristics is verified by bench test. Then, based on the electric vehicle model and the in-wheel motors model that has been verified by a vehicle test, the instability mechanism of the vehicle with single motor failure is analyzed. Next, taking the yaw rate and the side-slip angle as the state variables, an in-loop controller based on model predictive control theory is designed; taking the yaw angle as the state variable, an outer-loop controller based on fuzzy proportional integral derivative control theory is designed. Finally, the expected stability control is achieved by the distribution of four-wheel brake torque. According to the research, compared with the simple drive motor torque following and motor regenerative brake control, the electromechanical composite brake control can enable the vehicle to offset the effects of instability torque more quickly, so that the vehicle can follow the expected motion trajectory basically and improve the vehicle stability.

Funder

national natural science foundation of china

Natural Science Foundation of Hebei Province

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3