Predictions of the design decisions for vehicle alloy wheel rims using neural network

Author:

Topaloğlu Anıl1ORCID,Kaya Necmettin2,Öztürk Ferruh3

Affiliation:

1. Automotive Engineering Department, TOFAŞ Türk Otomobil Fabrikası A.Ş Bursa, Türkiye, Bursa Uludağ University, Bursa, Türkiye

2. Department of Mechanical Engineering, Bursa Uludağ University, Bursa, Türkiye

3. Automotive Engineering Department, Bursa Uludağ University, Bursa, Türkiye

Abstract

The weight and modal performance of the vehicle wheels are two essential factors that affect the driving comfort of a vehicle. The main objective of this study is to present an efficient approach to reduce the weight and enhance the modal performance of the wheel by reducing the design time and computational cost. The alloy wheel rim is often used for lightweight wheel design. In this study, an approach is presented for the lightweight design of alloy wheel rims. An intelligent approach based on neural networks (NNs) is introduced to predict the optimum design parameters of the wheel rim during the wheel design phase and to improve the wheel optimization process. The Latin hypercube and Hammersley designs of the experimental methods were used to obtain a training dataset with finite element analysis. The NN and multiple linear regression (MLR) models were trained to predict the weight, first-mode frequency, and displacement values. A multi-objective genetic algorithm was employed to optimize the design decisions based on the predicted values. It was used to compute the optimum results with both the NN and MLR models for a better prediction accuracy of the wheel rim design parameters. The proposed approach allows designers to optimize design decisions and evaluate design modifications during the early stages of the wheel development phase. The surrogate-based optimization method plays an important role in the wheel rim optimization process, particularly when the optimization model is established based on computationally expensive finite element simulations, testing, and prototypes. The results show the effectiveness of the NN-combined genetic optimization approach in predicting the responses and optimizing the design decisions for the alloy wheel rim design by reducing engineering time and computational cost.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3