Deceleration of sliding motorcycles (mainly scooters) in accident reconstructions

Author:

Cialdai Carlo1,Vangi Dario1,Virga Antonio1

Affiliation:

1. Department of Industrial Engineering, University of Florence, Florence, Italy

Abstract

This paper presents an analysis of the situation in which a two-wheeler (i.e. a motorcycle, where the term motorcycles includes scooters) falls over to the side and then successively slides; this typically occurs in road accidents involving this type of vehicle. Knowing the deceleration rate of the sliding phase allows the kinetic energy dissipated and the speed of the motorcycle just before the fall to the ground to be calculated. These parameters are very important in the analysis and reconstruction of accidents. The work presented in this paper was developed in two experimental test sessions on fully faired motorcycles which are mainly of the scooter type and widely used in urban areas. In the first session, sliding tests were carried out, with the speed in the range 10–50 km/h, on three different types of road surface. Analysis of the evidence allowed the dissipative main phases of motion of the motorcycle (the impact with the ground, the rebounds and the stabilized swiping) to be identified and some factors affecting the phenomenon to be studied. The coefficient of average deceleration was calculated using two typical equations. The second test session consisted of drag tests. In these tests, the motorcycle, which had previously laid on its side, was dragged for a few metres at a constant speed of about 20 km/h, while the drag force was measured. A comparison of the results obtained in these tests with those obtained in the sliding tests yielded very good agreement in the coefficients of deceleration.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3