Affiliation:
1. College of Automotive Engineering, Jilin University, Changchun, China
2. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, China
Abstract
The optimal tracking control of air pressure and air flow is an important guarantee to improve the output characteristics of fuel cells. However, under the load disturbances scenario, the optimal control effect is difficult to guarantee. In order to solve this problem, this paper proposes a new control method based on real-time disturbances observation and MPC optimal control. The decoupling of air pressure and air flow is realized by feedback linearization, and then an extended state observer is designed to achieve accurate estimation of load disturbances. Based on the principle of optimal output power of the fuel cell system, the reference trajectory of air pressure and air flow is obtained. Based on this, the optimal MPC controller is designed to achieve accurate tracking of air pressure and air flow by controlling the motor voltage of the air compressor and the opening of the back pressure valve. Under load disturbances, compared with feedback linearization control, improved tracking and robust performances of the proposed strategy can be exhibited through offline and online tests, the net power of PEMFCs is increased by 3%.
Funder
Jilin Province Science and Technology Development Pro-gram
Free exploration project of Natural Science Foundation of Jilin Province
FAW-Volkswagen-China Environmental Protection Foundation Automotive Eco-friendly Innovation Project
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献