An air supply system regulation method for PEMFCs based on disturbance observation and MPC control

Author:

Song Dafeng1,Wu Qingtao1,Zeng Xiaohua2ORCID,Zhang Xuanming2,Yang Dongpo1ORCID,Qian Qifeng2

Affiliation:

1. College of Automotive Engineering, Jilin University, Changchun, China

2. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, China

Abstract

The optimal tracking control of air pressure and air flow is an important guarantee to improve the output characteristics of fuel cells. However, under the load disturbances scenario, the optimal control effect is difficult to guarantee. In order to solve this problem, this paper proposes a new control method based on real-time disturbances observation and MPC optimal control. The decoupling of air pressure and air flow is realized by feedback linearization, and then an extended state observer is designed to achieve accurate estimation of load disturbances. Based on the principle of optimal output power of the fuel cell system, the reference trajectory of air pressure and air flow is obtained. Based on this, the optimal MPC controller is designed to achieve accurate tracking of air pressure and air flow by controlling the motor voltage of the air compressor and the opening of the back pressure valve. Under load disturbances, compared with feedback linearization control, improved tracking and robust performances of the proposed strategy can be exhibited through offline and online tests, the net power of PEMFCs is increased by 3%.

Funder

Jilin Province Science and Technology Development Pro-gram

Free exploration project of Natural Science Foundation of Jilin Province

FAW-Volkswagen-China Environmental Protection Foundation Automotive Eco-friendly Innovation Project

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3