Torque ripple compensation control for hybrid UGVs in mode transition based on current harmonic control of a PMSM

Author:

Zhang Wei1ORCID,Liu Hui1ORCID,Zhang Xun1,Wu Yunhao1ORCID,Gao Pu1ORCID,Wang Zhen1,Zhang Wannian1

Affiliation:

1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing, People’s Rupublic of China

Abstract

Load jumping and mode transitions both cause the unstable dynamic states for compound power-split hybrid Unmanned Ground Vehicles (UGVs), and these phenomena lead to vibrations of the transmission system and longitudinal buffeting of the vehicle. This study presents a feed-forward compensation control strategy for load jumping and mode transitions to reduce the corresponding torsional vibration in hybrid UGVs. The proposed method injects an appropriate harmonic current into a permanent magnet synchronous motor (PMSM) to generate a harmonic torque that is opposite to the load torque, which improves the dynamic response quality of the vehicle load. First, the multimode structure of a hybrid UGV and mode switching vibration and shock are investigated, as well as a feed-forward compensate control architecture is proposed. Second, two models are established the PMSM dynamic model based on the electromagnetic coupling principle and a 2-degree-of-freedom torsional vibration model of transmission system by simplifying the vehicle system. Third, the harmonic current injection method is proposed, and the harmonic current equation is derived. Based on the field-oriented control algorithm, a double closed-loop controller is designed for the torque and speed of the PMSM, and the internal model control method is applied to design the current controller. The simulation results show that the proposed strategy effectively suppresses jerk and that the harmonics current transfers the energy from the mechanical vibrations of the system into electric power fluctuations.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3