Bulk temperature prediction of a two-speed automatic transmission for electric vehicles using thermal network method and experimental validation

Author:

Liu Yonggang12ORCID,Peng Jingyu1,Wang Bing3,Qin Datong1ORCID,Ye Ming2

Affiliation:

1. State Key Laboratory of Mechanical Transmissions and School of Automotive Engineering, Chongqing University, Chongqing, China

2. Key Laboratory of Advanced Manufacture Technology for Automobile Parts, Ministry of Education, Chongqing University of Technology, Chongqing, China

3. Dongfeng Automotive Engineering Technical Centre, Dongfeng Motor Corporation, Hubei, China

Abstract

Nowadays, the development of electric vehicle equipped with a two-speed automatic transmission has become a hotspot. As well known, the automatic transmission operates with power loss including gear meshing loss, bearing loss, and oil churning loss. This paper focuses on the bulk temperature prediction of a two-speed automatic transmission using thermal network method. An integrated model, including an efficiency model and a heat balance model, is proposed, which makes it possible to predict power loss, bulk temperature, and temperature distributions under different conditions. In the efficiency model, each part of power losses from gear meshes is studied to calculate the summation of mechanical power losses in the transmission, including losses of gear meshing, bearing and oil churning. In the heat balance model, the entire gearbox is divided into elements with a uniform temperature connected by thermal resistances which account for conduction, convection, and radiation, based upon the first law of thermodynamics for transient conditions. The effectiveness of bulk temperature prediction using thermal network method is validated by the comparison between simulation results and the experimental data. Consequently, this study on heat transfer characteristics, thermal characteristics, and bulk temperature prediction of the two-speed automatic transmission has significant academic and application values.

Funder

The Key Laboratory of Advanced Manufacture Technology for Automobile Parts, Ministry of Education

National Natural Science Foundation of China

The Special Funding for Postdoctoral Research Projects in Chongqing

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3