Cooperative control for lane departure prevention based on model predictive control and gated recurrent unit model

Author:

Qin Zengke1ORCID,Guo Lie1,Wu Jian2,Ge Pingshu3,Liu Xin2,Zhao Liyuan4

Affiliation:

1. School of Mechanical Engineering, Dalian University of Technology, Dalian, China

2. School of Mechanical and Automotive Engineering, Liaocheng University, Liaocheng, China

3. College of Mechanical and Electronic Engineering, Dalian Minzu University, Dalian, China

4. Samueli School of Engineering, University of California, Los Angeles, CA, USA

Abstract

Human-machine conflict has a significant impact on driving safety, posing a vital challenge in the design of lane departure prevention (LDP) systems. To address the issue, this paper proposes a driver-intelligent vehicle cooperative steering torque assistance control strategy. The lane departure decision-making module based on the gated recurrent unit (GRU) is used to predict the lateral deviation of the vehicle and to make real-time decisions regarding the switching of the model predictive control (MPC) based assistance controller. Next, the conflict performance between the MPC lane keeping and conflict reduction (MPC-LKCR) controller’s torque and the driver’s torque is added to the optimization objective of the MPC lane keeping (MPC-LK) controller, while the lane keeping performance is continually retained. That is because a shared factor based on the fuzzy model is designed with the ability to adjust the assistance torque within the MPC-LKCR controller according to the driver’s intention. Finally, after the overall optimization of the MPC-LKCR controller, the final torque after the superposition of driver and assistance torque acts on the steering column to realize the human-machine cooperative steering control. The driving data from 52 drivers were collected to train the GRU model offline. The proposed strategy was simulated and analyzed under different driving scenarios, and hardware-in-the-loop experiments were completed on a driving simulator to validate it. Hardware-in-the-loop results show that the average conflict intensity and conflict time ratio are reduced by 23.8% and 34.4% under the MPC-LKCR controller compared to the MPC-LK controller. The strategy not only accomplishes the task of vehicle lane departure but also effectively reduces the time and intensity of human-machine conflicts.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3