Chebyshev polynomials based compensator design via higher order sinusoidal input describing functions in traction motor drive to improve performance of electric vehicle

Author:

Kaptan Deniz1ORCID,Ucun Buse Tacal1ORCID,Ucun Levent1ORCID

Affiliation:

1. Department of Control and Automation Engineering, Yildiz Technical University, Istanbul, Turkey

Abstract

In electric vehicles (EVs), the efficient selection of the basic elements and the control of the electric motor and the overall system is vital to extend the performance of the vehicle. A feedback control loop with proportional-integral (PI) controllers is usually used in the control of electric motors. Within the scope of this study, the system is handled with frequency-based methods and it is aimed to reduce the performance degrading effect on the system output. In this study, Higher Order Sinusoidal Input Describing Functions (HOSIDFs) are used in order to improve the performance of EVs. Here, the EV is modeled as a Lur’e-type system and a compensator is designed within the PI speed control loop of the electric motor by using Chebyshev polynomials. The optimal coefficients of the Chebyshev polynomials-based compensator minimize the cost function which is related to the harmonics of the system output. This work introduces a novel approach for controlling the traction motor of EVs using a frequency-based method through HOSIDFs. The objective is to enhance the performance of the drive system. Throughout this study, it is also aimed to improve the consumption of the battery and passenger comfort. The results and success of the proposed method are illustrated in time-domain and harmonic plots.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3