Affiliation:
1. Department of Mechanical Engineering, Visvesvaraya National Institute of Technology, Nagpur, India
Abstract
Identification of correct working of gearbox is a very important function during end of line inspection in the assembly line while manufacturing the gearbox. Such inspection is performed by an operator by listening to the sound of gearbox while running it on a test bench. Based on the sound emitted by the gearbox combined with experience and judgment of the operator, the gearbox is passed or rejected for fitting inside the vehicle. This paper makes an attempt to use artificial intelligence techniques to identify gearbox condition in the above environment by using psychoacoustic features to replace human hearing. Experiments are carried out on a gearbox test rig and sound data are acquired for good and faulty gear conditions. Psychoacoustic features and statistical indices are extracted from the data and these are then used as input to an artificial neural network. The artificial neural network output is the condition of gearbox. Performances of psychoacoustic and statistical indices are then compared. It is found that psychoacoustic features are able to predict gearbox condition with an accuracy of 99% and 98% for good and faulty conditions, respectively, whereas the statistical features are able to do the same with 97% and 98% accuracy. Therefore, it is concluded that psychoacoustic features have the potential to be used for the end of line inspection of gearbox in manufacturing environment and the process of inspection can be made objective by eliminating operator’s ability and judgment.
Subject
Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献