Wavelet transform and least square support vector machine for mechanical fault detection of an alternator using vibration signal

Author:

Abad Mohammad Reza Asadi Asad1,Moosavian Ashkan1,Khazaee Meghdad1

Affiliation:

1. Department of Mechanical Engineering, College of Engineering, Buinzahra Branch, Islamic Azad University, Buinzahra, Iran

Abstract

This article deals with fault detection of an alternator based on vibration signals using wavelet transform and least square support vector machine. Firstly, the noise in the vibration signal is removed using wavelet denoising. The denoised signals are then analysed using discrete wavelet transform with Daubechies mother wavelet. Several statistical features are then extracted from discrete wavelet transform coefficients of the signals. Finally, least square support vector machine is employed to detect and classify the different alternator conditions. The results show that the detection accuracy reached 90.48%. Hence, the proposed procedure is capable of detecting the alternator faults, and thus can be used for practical applications.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3