Numerical simulation and experimental research on the aerodynamic performance of large marine axial flow fan with a perforated blade

Author:

Yang Xinglin1,Wu Chenhui1,Wen Huabing1,Zhang Linglong2

Affiliation:

1. School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang, People’s Republic of China

2. Nantong Rainbow Heavy Machineries Co., Ltd, Nantong 226013, People’s Republic of China

Abstract

In this study, some of the optimal parameters for a new-style marine axial flow fan are defined by using numerical simulation and experimental tests with a large marine axial flow fan, based on the analysis of the blade perforation’s influences on its internal flow field and aerodynamic noise characteristics. Test result shows that the noise reduction for the axial flow fan with perforated blade is about 3 dB when the blade perforation diameter D is 10 mm and its deflection angle α is 45°. The results of the study show that there is an inhibitory effect on the discrete noise of axial flow fan with perforated blade on the tip area, and its total noise level emerged as the fluctuated distribution characteristics with the increase in the perforation diameter D and reduced along with the increase in the deflection of perforation angle α, at the same time varied as a linear characteristics, which can be reasonably explained by the acoustic interference theory. The results of the study have also further confirmed that the improvement of the flow of axial flow fan with perforated blade helps to reduce the pressure pulsation amplitude caused by the turbulence of the blade surface boundary layer, thereby suppressing the back-flow and vortex from the pressure surface to the suction surface efficiently. It is indicated that the improved vortex shedding phenomenon at the blade trailing edge after perforation on the area of blade tip is the main reason for the aerodynamic noise reduction of axial flow fan.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3