Dealing with censoring in a network meta-analysis of time-to-event data

Author:

Kalyvas Chrysostomos12,Papadimitropoulou Katerina3,Malbecq William2,Spineli Loukia M.4ORCID

Affiliation:

1. Biostatistics and Medical Informatics, University of Ljubljana Medical Faculty, Ljubljana, Slovenia

2. Biostatistics and Research Decision Sciences, MSD Europe Inc, Brussels, Belgium

3. Health Economics and Market Access, Amaris Consulting, Lyon, France

4. Midwifery Research and Education Unit, Hannover Medical School, Hannover, Germany

Abstract

Background The Health Technology Assessment agencies typically require an economic evaluation considering a lifetime horizon for interventions affecting survival. However, survival data are often censored and are typically analyzed assuming the censoring mechanism independent of the event process. This assumption may lead to biased results when the censoring mechanism is informative. Methods We propose a flexible approach to jointly model the participants experiencing an event and censored participants by incorporating the pattern-mixture (PM) model in the fractional polynomial (FP) model within the network meta-analysis (NMA) framework. We introduce the informative censoring hazard ratio parameter that quantifies the departure from the censored at random assumption. The FP-PM model is exemplified in an NMA of the overall survival from non-small cell lung carcinoma studies using Bayesian methods. Results The results on hazard ratio and survival from the FP-PM model are similar to those from the FP model. However, the posterior standard deviation of the hazard ratio is slightly greater when censored data are modeled because the uncertainty induced by censoring is naturally accounted for in the FP-PM model. The between-study standard deviation is almost identical in both models due to the low censoring rate across the studies. At the end of the corresponding studies, the informative censoring hazard ratio demonstrated a possible departure from the censored at random assumption for gefitinib and best supportive care. Conclusions The proposed method offers a comprehensive sensitivity analysis framework to examine the robustness of the NMA results to clinically plausible censoring scenarios.

Publisher

SAGE Publications

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3