Choice of link functions for generalized linear mixed models in meta-analyses of proportions

Author:

Siegel Lianne K1ORCID,Silva Milena1ORCID,Lin Lifeng2ORCID,Chen Yong3,Liu Yu-Lun4,Chu Haitao15

Affiliation:

1. Division of Biostatistics and Health Data Science, University of Minnesota, Minneapolis, MN, USA

2. Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, USA

3. Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

4. Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, USA

5. Statistical Research and Data Science Center, Pfizer Inc, New York, NY, USA

Abstract

Two-step approaches for synthesizing proportions in a meta-analysis require first transforming the proportions to a scale where their distribution across studies can be approximated by a normal distribution. Commonly used transformations include the log, logit, arcsine, and Freeman-Tukey double-arcsine transformations. Alternatively, a generalized linear mixed model (GLMM) can be fit directly on the data using the exact binomial likelihood. Unlike popular two-step methods, this accounts for uncertainty in the within-study variances without a normal approximation and does not require an ad hoc correction for zero counts. However, GLMMs require choosing a link function; we illustrate how the AIC can be used to choose the best fitting link when different link functions give different results. We also highlight how misspecification of the link function can introduce bias; using an empirical sandwich estimator for the standard error may not sufficiently avoid undercoverage due to link function misspecification. We demonstrate the application of GLMMs and choice of link function using data from a systematic review on the prevalence of fever in children with COVID-19.

Funder

National Heart, Lung, and Blood Institute

U.S. National Library of Medicine

Publisher

SAGE Publications

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3