Progress and applications of (Cu–)Ag–Bi–I semiconductors, and their derivatives, as next-generation lead-free materials for photovoltaics, detectors and memristors

Author:

Zhu Huimin12,Turkevych Ivan3,Lohan Hugh24,Liu Pengjun2,Martin Robert W.1,Massabuau Fabien C. P.1,Hoye Robert L. Z.12

Affiliation:

1. Department of Physics, SUPA, University of Strathclyde, Glasgow, UK

2. Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK

3. National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan

4. Department of Materials, Imperial College London, Exhibition Road, London, UK

Abstract

The search for efficient but inexpensive photovoltaics over the past decade has been disrupted by the advent of lead-halide perovskite solar cells. Despite impressive rises in performance, the toxicity and stability concerns of these materials have prompted a broad, interdisciplinary community across the world to search for lead-free and stable alternatives. A set of such materials that have recently gained attention are semiconductors in the CuI–AgI–BiI3 phase space and their derivatives. These materials include ternary silver bismuth iodide compounds (Ag aBi bI a+3 b), ternary copper bismuth iodide Cu–Bi–I compounds and quaternary Cu–Ag–Bi–I materials, as well as analogues with Sb substituted into the Bi site and Br into the I site. These compounds are comprised of a cubic close-packed sub-lattice of I, with Ag and Bi occupying octahedral holes, while Cu occupies tetrahedral holes. The octahedral motifs adopted by these compounds are either spinel, CdCl2-type, or NaVO2-type. NaVO2-type Ag aBi bI a+3 b compounds are also known as rudorffites. Many of these compounds have thus far demonstrated improved stability and reduced toxicity compared to halide perovskites, along with stable bandgaps in the 1.6–1.9 eV range, making them highly promising for energy harvesting and detection applications. This review begins by discussing the progress in the development of these semiconductors over the past few years, focusing on their optoelectronic properties and process–property–structure relationships. Next, we discuss the progress in developing Ag–Bi–I and Cu–Bi–I compounds for solar cells, indoor photovoltaics, photodetectors, radiation detectors and memristors. We conclude with a discussion of the critical fundamental questions that need to be addressed to push this area forward, and how the learnings from the wider metal-halide semiconductor field can inform future directions.

Publisher

SAGE Publications

Subject

Materials Chemistry,Metals and Alloys,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3