A Data-Driven Approach to Predicting Septic Shock in the Intensive Care Unit

Author:

Yee Christopher R1,Narain Niven R1,Akmaev Viatcheslav R1,Vemulapalli Vijetha1ORCID

Affiliation:

1. Berg LLC, Framingham, MA, USA

Abstract

Early diagnosis of sepsis and septic shock has been unambiguously linked to lower mortality and better patient outcomes. Despite this, there is a strong unmet need for a reliable clinical tool that can be used for large-scale automated screening to identify high-risk patients. We addressed the following questions: Can a novel algorithm to identify patients at high risk of septic shock 24 hours before diagnosis be discovered using available clinical data? What are performance characteristics of this predictive algorithm? Can current metrics for evaluation of sepsis be improved using novel algorithm? Publicly available data from the intensive care unit setting was used to build septic shock and control patient cohorts. Using Bayesian networks, causal relationships between diagnosis groups, procedure groups, laboratory results, and demographic data were inferred. Predictive model for septic shock 24 hours prior to digital diagnosis was built based on inferred causal networks. Sepsis risk scores were augmented by de novo inferred model and performance was evaluated. A novel predictive model to identify high-risk patients 24 hours ahead of time, with area under curve of 0.81, negative predictive value of 0.87, and a positive predictive value as high as 0.65 was built. The specificity of quick sequential organ failure assessment, systemic inflammatory response syndrome, and modified early warning score was improved when augmented with the novel model, whereas no improvements were made to the sequential organ failure assessment score. We used a data-driven, expert knowledge agnostic method to build a screening algorithm for early detection of septic shock. The model demonstrates strong performance in the data set used and provides a basis for expanding this work toward building an algorithm that is used to screen patients based on electronic medical record data in real time.

Publisher

SAGE Publications

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3