Effects of an Auditory Versus Visual Stimulus on Reaction and Response Time During Countermovement Jumps

Author:

Lowell Russell1ORCID,Saucier David23,Chander Harish1,Burch Reuben23,Gillen Zachary1

Affiliation:

1. Department of Kinesiology, Mississippi State University, Mississippi State, MS, USA

2. Department of Industrial & Systems Engineering, Mississippi State University, Mississippi State, MS, USA

3. Human Factors & Athlete Engineering, Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, MS, USA

Abstract

Reacting and responding to an external stimulus is an important component of human performance, and they inform us about a participant’s neurophysiological capabilities. Our purpose in this study was to determine whether reaction times (REACT), response times (RT), and countermovement jump (CMJ) performance differ when responding to an auditory (AUD) versus visual (VIS) stimulus. Participants were 17 college-aged volunteers (6 females and 11 males; M age = 23.0, SD = 3.4 years; M height = 174.57, SD = 10.37 cm; M body mass = 73.37, SD = 13.48 kg). Participants performed CMJs on force plates immediately upon receiving an AUD or a VIS stimulus. The AUD stimulus was a beep noise, while the VIS stimulus was a light on a screen in front of the participants. We determined REACT for the tibialis anterior (TA), medial gastrocnemius (GM), vastus lateralis (VL), and biceps femoris (BF) muscles to be the amount of time between stimulus onset and the initiation of the muscle’s electromyographic (EMG) signal. We determined RT to be the amount of time between stimulus onset and the beginning of the participant’s force production. We assessed CMJ performance via ground reaction forces during the unweighting, braking, and propulsive phases of the jump. We quantified EMG amplitude and frequency during each CMJ phase. We found RT to be faster to the AUD versus the VIS stimulus ( p = .007). VL and BF muscles had faster REACT than TA and GM muscles ( p ≤ .007). The AUD stimulus was associated with faster CMJ unweighting phase metrics ( p ≤ .005). Thus, individuals may react and respond faster to an AUD versus VIS stimulus, with limited improvements in their subsequent physical performance.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3