Reduced Vestibulo-Ocular Reflex During Fast Head Rotation in Complete Darkness

Author:

Sjögren Julia1,Fransson Per-Anders1ORCID,Patel Mitesh2ORCID,Blom Christoffer Lundén1,Johansson Rolf34ORCID,Magnusson Måns1,Tjernström Fredrik1

Affiliation:

1. Department of Clinical Sciences, Otorhinolaryngology Head and Neck Surgery, Skåne University Hospital, Lund University, Sweden

2. The School of Medicine, University of Central Lancashire, Burnley, UK

3. Department of Automatic Control, Lund University, Sweden

4. School of Aviation, Lund University, Sweden

Abstract

The human vestibulo-ocular reflex (VOR) leads to maintenance of the acuity of an image on the retina and contributes to the perception of orientation during high acceleration head movements. Our objective was to determine whether vision affects the horizontal VOR by assessing and comparing the performance at the boundaries of contribution of: (a) unrestricted visual information and (b) no visual information. Understanding how the VOR performs under both lighted and unlighted conditions is of paramount importance to avoiding falls, perhaps particularly among the elderly. We tested 23 participants ( M age = 35.3 years, standard error of mean ( SEM) = 2.0 years). The participants were tested with the video Head Impulse Test (vHIT), EyeSeeCam from Interacoustics™, which assesses whether VOR is of the expected angular velocity compared to head movement angular velocity. The vHIT tests were performed under two conditions: (a) in a well-lit room and (b) in complete darkness. The VOR was analyzed by evaluating the gain (quotient between eye and head angular velocity) at 40, 60 and 80 ms time stamps after the start of head movement. Additionally, we calculated the approximate linear gain between 0-100 ms through regression. The gain decreased significantly faster across time stamps in complete darkness ( p < .001), by 10% in darkness compared with a 2% decrease in light. In complete darkness, the VOR gain gradually declined, reaching a marked reduction at 80 ms by 10% ( p < .001), at which the head velocities were 150°/second or faster. The approximate linear gain value was not significantly different in complete darkness and in light. These findings suggest that information from the visual system can modulate the high velocity VOR. Subsequently, fast head turns might cause postural imbalance and momentary disorientation in poor light in people with reduced sensory discrimination or motor control, like the elderly.

Publisher

SAGE Publications

Subject

Sensory Systems,Experimental and Cognitive Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3