Machine Learning Recognizes Frequency-Following Responses in American Adults: Effects of Reference Spectrogram and Stimulus Token

Author:

Bauer Sydney W.1ORCID,Jeng Fuh-Cherng1ORCID,Carriero Amanda1

Affiliation:

1. Communication Sciences and Disorders, Ohio University, Athens, OH, USA

Abstract

Electrophysiological research has been widely utilized to study brain responses to acoustic stimuli. The frequency-following response (FFR), a non-invasive reflection of how the brain encodes acoustic stimuli, is a particularly propitious electrophysiologic measure. While the FFR has been studied extensively, there are limitations in obtaining and analyzing FFR recordings that recent machine learning algorithms may address. In this study, we aimed to investigate whether FFRs can be enhanced using an “improved” source-separation machine learning algorithm. For this study, we recruited 28 native speakers of American English with normal hearing. We obtained two separate FFRs from each participant while they listened to two stimulus tokens /i/ and /da/. Electroencephalographic signals were pre-processed and analyzed using a source-separation non-negative matrix factorization (SSNMF) machine learning algorithm. The algorithm was trained using individual, grand-averaged, or stimulus token spectrograms as a reference. A repeated measures analysis of variance revealed that FFRs were significantly enhanced ( p < .001) when the “improved” SSNMF algorithm was trained using both individual and grand-averaged spectrograms, but not when utilizing the stimulus token spectrogram. Similar results were observed when extracting FFRs elicited by using either stimulus token, /i/ or /da/. This demonstration shows how the SSNMF machine learning algorithm, using individual and grand-averaged spectrograms as references in training the algorithm, significantly enhanced FFRs. This improvement has important implications for the obtainment and analytical processes of FFR, which may lead to advancements in clinical applications of FFR testing.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3