Investigation of Thunder™ Actuators as Underwater Propulsors

Author:

Balakrishnan Sivakumar1,Niezrecki Christopher2

Affiliation:

1. Department of Mechanical Engineering, University of Florida, P.O. Box 116300, Gainesville, Florida 32611-6300, USA

2. Department of Mechanical Engineering, University of Florida, P.O. Box 116300, Gainesville, Florida 32611-6300, USA,

Abstract

Piezoelectric actuators have been used for active vibration control, noise suppression, health monitoring, etc. The large appeal in using smart material actuators stems from their high mechanical energy density. A relatively new actuator Thin Layer Composite Unimorph Ferroelectric Driver and Sensor (THUNDER) has overcome the displacement hurdles that have plagued traditional piezoelectric based actuators. It is capable of providing a displacement of the order of 0.5 cm. This allows the actuator to be used in some underwater applications, such as propulsion. To date the electrical power consumption and electro-mechanical efficiency of these actuators has not been quantified; specifically, applied as underwater propulsors. Some of the challenges in obtaining this information stems from the actuator’s nontraditional actuating architecture, high voltage requirements, and its electrical nonlinearity. This work experimentally determines the mechanical displacement and the electrical power consumption of the THUNDER actuators used as underwater propulsors. An estimate of a lower bound of the thrust that can be generated by the clamshell actuator is obtained. It is found that the actuator has a peak flow rate of approximately 1500 cm3/s and can generate a peak thrust greater than approximately 4.5 N. This preliminary analysis neglected the pressure forces acting on the actuator and therefore, the actual thrust is not computed. It is found that the average electrical power consumed by two THUNDER actuators placed in a clamshell configuration operating at 14 Hz is approximately 8 W, which is significantly less than that consumed by other autonomous underwater vehicles. The displacement response and the current draw of the actuators are determined to be nonlinear. The result of this work indicates that the use of THUNDER actuators has great potential to create an underwater propulsor that has low power consumption, can operate at great depths, and eliminates the need for seals, bearings and a propeller.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3