Predictions for the Increase in Pressure and Water Content of Vacuum Insulation Panels (VIPs) Integrated into Building Constructions using Model Calculations

Author:

Schwab Hubert1,Heinemann Ulrich1,Wachtel Johannes1,Ebert Hans-Peter1,Fricke Jochen1

Affiliation:

1. Bavarian Center of Applied Energy Research (ZAE Bayern), Am Hubland, 97074 Würzburg, Germany

Abstract

The climatic conditions (temperature, relative humidity, and water vapor pressure) on both sides of vacuum insulation panels (VIPs) that were integrated into different building constructions are measured every hour. The influence of these conditions on the increase in air pressure and water content within the VIPs is estimated using a calculation model. The results of these model calculations are correlated with the pressure and mass measurements on VIPs, exposed to actual climate but removed for laboratory measurements. First, we find that upon use of the temperature-dependent air permeation rates for VIPs, the linear increase within the VIPs can be predicted reliably. Thus, it is sufficient to use annual average temperatures for these estimates. Second, the mass increase of VIPs due to infusion of water vapor through the barrier foil can be determined using the calculation model. The ‘driving’ force in this case is the difference in vapor pressure across the foil cover, which decreases with time, once the water vapor pressure within the VIP starts increasing. In effect, the water vapor pressure and the water content within the VIPs reach equilibrium. Depending on the climatic conditions, the maximum water content between 3 and 7 m% can be predicted.

Publisher

SAGE Publications

Subject

Fluid Flow and Transfer Processes,Mechanics of Materials,General Materials Science,Building and Construction

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3