Thermal Performance Patterns on Solid Masonry Exterior Walls of Historic Buildings

Author:

Colantonio Antonio1

Affiliation:

1. Public Works and Government Services Canada Technology and Environment A&E Services, RPS Branch 38 Antares Dr., 1000 Nepean, Ontario, Canada K1A 0M2

Abstract

The Parliamentary Precinct in Ottawa, Canada, is comprised of a number of historic buildings that include the House of Commons, the Senate Chamber, the Parliamentary Library, the Peace Tower, and other buildings that pro vide offices for parliamentarians and their staff. The majority of these buildings have exterior walls that are made of solid masonry with thicknesses ranging between 400 mm and 800 mm. In some cases, special wall areas are more than 1200 mm thick and are comprised of various types of masonry materials. With winter design tempera tures of-25°C, more than 170 cm of snowfall, and numerous thaws during the five month heating season, the exterior environmental conditions acting on the exterior wall assemblies of these historic buildings are severe enough to cause masonry and mortar deterioration wherever moisture accumulates during winter months. Infrared thermographic inspections were carried out to locate and identify the causal mechanisms of moisture accumulation within masonry wall assemblies. This paper will discuss the types of thermal patterns produced by various mechanisms of heat loss and identify some of the typical areas where possible masonry deterioration occurs. Knowledge gained from these extensive investigations will be used to de velop a nondestructive test methodology to locate areas of freeze-thaw damage as part of a predictive and preventive maintenance program to reduce preservation costs of these historical structures.

Publisher

SAGE Publications

Subject

General Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3