Affiliation:
1. Utrecht University, the Netherlands
Abstract
Aedes aegypti, the primary vector for dengue, chikungunya and zika, breeds mainly in stored/stagnant water and thrives in contexts of rapid urbanization in tropical countries. Some have warned that climate change, in conjunction with urbanization, could drive the proliferation of Aedes aegypti mosquitoes. In Colombia dengue has been endemic since the 1990s and the country had the highest number of cases of zika virus in the world after Brazil. Studies have found that domestic stored water contributes to high percentages of the total Ae. aegypti pupal population in Colombian urban sectors. In particular, neighborhoods where water service provision is intermittent are vulnerable to mosquito-borne diseases as water is stored inside households. This article draws on archival work, interviews, and entomological literature to reflect on the ways in which rapid urbanization in the context of armed conflict, infrastructural inequality, the absence of formal jobs, and specific water laws and regulations produce water and Aedes aegypti in the city. It offers an initial attempt to theorize water with larvae by focusing on two interrelated processes. First, the historical and geographic processes that underlie the production of stored water, which despite being treated can become a place of fertility where mosquitoes can flourish. Secondly, the processes by which water, mosquitoes, pathogens, and human bodies become interrelated. This entails thinking about some homes in Barranquilla as socioecological assemblages that are dynamically produced, socially and materially.
Funder
International Development Research Centre
The Water and Development Partnership Programme
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献